The two parameter quantum groups $U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra and their equitable presentation
نویسندگان
چکیده مقاله:
We construct a family of two parameter quantum grou-\ps $U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody algebra corresponding to symmetrizable admissible Borcherds Cartan matrix. We also construct the $textbf{A}$-form $U_{textbf{A}}$ and the classical limit of $U_{r,s}(mathfrak{g})$. Furthermore, we display the equitable presentation for a subalgebra $U_{r,s}^{b-}(mathfrak{g} )$ of $U_{r,s}(mathfrak{g})$ and show that this presentation has the attractive feature that all of its generators act semisimply on finite dimensional irreducible $U_{r,s}(mathfrak{g})$-modules associated with the Kac-Moody algebra.
منابع مشابه
the two parameter quantum groups $u_{r,s}(mathfrak{g})$ associated to generalized kac-moody algebra and their equitable presentation
we construct a family of two parameter quantum grou-ps $u_{r,s}(mathfrak{g})$ associated with a generalized kac-moody algebra corresponding to symmetrizable admissible borcherds cartan matrix. we also construct the $textbf{a}$-form $u_{textbf{a}}$ and the classical limit of $u_{r,s}(mathfrak{g})$. furthermore, we display the equitable presentation for a subalgebra $u_{r,...
متن کاملthe two parameter quantum groups $u_{r,s}(mathfrak{g})$ associated to generalized kac-moody algebra and their equitable presentation
we construct a family of two parameter quantum grou-ps $u_{r,s}(mathfrak{g})$ associated with a generalized kac-moody algebra corresponding to symmetrizable admissible borcherds cartan matrix. we also construct the $textbf{a}$-form $u_{textbf{a}}$ and the classical limit of $u_{r,s}(mathfrak{g})$. furthermore, we display the equitable presentation for a subalgebra $u_{r,s}^{b-...
متن کاملThe Spherical Hecke Algebra for Affine Kac-moody Groups I
We define the spherical Hecke algebra for an (untwisted) affine Kac-Moody group over a local non-archimedian field. We prove a generalization of the Satake isomorphism for these algebras, relating it to integrable representations of the Langlands dual affine Kac-Moody group. In the next publication we shall use these results to define and study the notion of Hecke eigenfunction for the group Ga...
متن کاملAddendum to “canonical Bases for Quantum Generalized Kac-moody Algebras”
We provide some necessary details to several arguments appearing in our previous paper “Canonical bases for quantum generalized Kac-Moody algebras”. As pointed out to us by several people, some of the arguments in our paper [KS] are too sketchy and at places incomplete. The first purpose of this addendum is to fill in the missing details and provide complete proofs. The second purpose is to exp...
متن کاملPresentation of Hyperbolic Kac–moody Groups over Rings
Tits has defined Kac–Moody and Steinberg groups over commutative rings, providing infinite dimensional analogues of the Chevalley–Demazure group schemes. Here we establish simple explicit presentations for all Steinberg and Kac–Moody groups whose Dynkin diagrams are hyperbolic and simply laced. Our presentations are analogues of the Curtis–Tits presentation of the finite groups of Lie type. Whe...
متن کاملPresentation of Affine Kac-moody Groups over Rings
Tits has defined Steinberg groups and Kac-Moody groups for any root system and any commutative ring R. We establish a Curtis-Tits-style presentation for the Steinberg group St of any rank ≥ 3 irreducible affine root system, for any R. Namely, St is the direct limit of the Steinberg groups coming from the 1and 2-node subdiagrams of the Dynkin diagram. This leads to a completely explicit presenta...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 39 شماره 1
صفحات 125- 149
تاریخ انتشار 2013-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023